v.1.0 (12.3.2022)

1 Boundedness

There are several different equivalent ways of characterizing the boundedness of a linear dynamical system, in the sense of "bounded input, bounded output". We consider the dynamical system:

$$
\begin{align*}
x_{t+1} & =A x_{t}+B u_{t} \tag{1}\\
y_{t} & =C x_{t}+D u_{t}
\end{align*}
$$

Theorem 1. Suppose (A, B, C, D) is a minimal realization, so (A, B) is controllable and (A, C) is observable. The following statements are equivalent.
(i) Let $\left\{u_{0}, u_{1}, \ldots\right\}$ and $\left\{y_{0}, y_{1}, \ldots\right\}$ be any sequence of inputs and outputs that satisfy (1) with $x_{0}=0$. The system has gain bound γ, which means that whenever $u \in \ell_{2}$, we have

$$
\|y\| \leq \gamma\|u\| .
$$

(ii) Let $\left\{u_{0}, u_{1}, \ldots,\right\}$ and $\left\{y_{0}, y_{1}, \ldots\right\}$ be any sequence of inputs and outputs that satisfy (1) with $x_{0}=0$. The system has finite gain bound γ, which means that

$$
\sum_{t=0}^{N-1}\left\|y_{t}\right\|^{2} \leq \gamma^{2} \sum_{t=0}^{N-1}\left\|u_{t}\right\|^{2} \quad \text { for all } N .
$$

(iii) $F_{N}(\xi) \geq 0$ for all ξ and all N, where F_{N} is defined as

$$
\begin{aligned}
F_{N}(\xi):=\begin{array}{cl}
\operatorname{minimize}_{0}, \ldots, u_{N}-1 \\
y_{0}, \ldots, y_{N}-1 \\
x_{0}, \ldots, x_{N} \\
\hline
\end{array} & \sum_{t=0}^{N-1}\left(\gamma^{2}\left\|u_{t}\right\|^{2}-\left\|y_{t}\right\|^{2}\right) \\
\text { s.t. } & x_{t+1}=A x_{t}+B u_{t}, \\
& y_{t}=C x_{t}+D u_{t} \quad \text { for } t=0, \ldots, N-1 \\
& x_{0}=0, \quad x_{N}=\xi
\end{aligned}
$$

(iv) There exists a matrix $P \succ 0$ satisfying the following LMI.

$$
\left[\begin{array}{cc}
A^{\top} P A-P+C^{\top} C & A^{\top} P B+C^{\top} D \\
B^{\top} P A+D^{\top} C & B^{\top} P B+D^{\top} D-\gamma^{2} I
\end{array}\right] \preceq 0
$$

(v) There exists a function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying $V(0)=0$ and $V(x)>0$ for all $x \neq 0$ such that for all $\left\{x_{t}, u_{t}, y_{t}\right\}$ that satisfy (1), we have the following dissipation inequality.

$$
V\left(x_{t+1}\right)-V\left(x_{t}\right) \leq \gamma^{2}\left\|u_{t}\right\|^{2}-\left\|y_{t}\right\|^{2} .
$$

Proof. We will prove Theorem 1 by proving (i) \Longleftrightarrow (ii) \Longrightarrow (iii) \Longrightarrow (iv) \Longrightarrow (v) \Longrightarrow (ii).
(i) \Longrightarrow (ii). Suppose (i) holds. Let $x_{0}=0$ and let $\left\{u_{0}, u_{1}, \ldots\right\}$ and $\left\{y_{0}, y_{1}, \ldots\right\}$ be inputs and outputs that satisfy (1). Define \hat{u} and \hat{y} to be the truncated versions of these signals:

$$
\hat{u}_{t}:=\left\{\begin{array}{ll}
u_{t} & 0 \leq t \leq N-1 \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad \hat{y}_{t}:= \begin{cases}y_{t} & 0 \leq t \leq N-1 \\
0 & \text { otherwise }\end{cases}\right.
$$

Since the system (1) is causal, applying the input \hat{u} actually produces \hat{y} as an output. Now write

$$
\sum_{t=0}^{N-1}\left\|y_{t}\right\|^{2}=\sum_{t=0}^{\infty}\left\|\hat{y}_{t}\right\|^{2} \leq \gamma^{2} \sum_{t=0}^{\infty}\left\|\hat{u}_{t}\right\|^{2}=\gamma^{2} \sum_{t=0}^{N-1}\left\|u_{t}\right\|^{2}
$$

The inequality in the middle follows from applying Item (i) to the signals \hat{u} and \hat{y}. Note that $\hat{u} \in \ell_{2}$ since it consists of finitely many nonzero components.
(ii) \Longrightarrow (i). Suppose (ii) holds. Let $x_{0}=0$ and let $\left\{u_{0}, u_{1}, \ldots\right\}$ and $\left\{y_{0}, y_{1}, \ldots\right\}$ be inputs and outputs that satisfy (1). If $u \in \ell_{2}$, then we have

$$
\sum_{t=0}^{N-1}\left\|y_{t}\right\|^{2} \leq \gamma^{2} \sum_{t=0}^{N-1}\left\|u_{t}\right\|^{2} \leq \gamma^{2} \sum_{t=0}^{\infty}\left\|u_{t}\right\|^{2}=\gamma^{2}\|u\|^{2}
$$

The left-hand side is an increasing function of N and uniformly bounded above, so the limit $N \rightarrow \infty$ exists, and we conclude that $y \in \ell_{2}$ and $\|y\|^{2} \leq \gamma^{2}\|u\|^{2}$, as required.
(ii) \Longrightarrow (iii). Nonnegativity of the objective function follows immediately from (ii), so the optimization problem must be nonnegative for every ξ. Note that if the optimization problem is infeasible, we have $F(\xi)=\infty \geq 0$ so nonnegativity still holds.
(iii) \Longrightarrow (iv). Suppose that Item (iii) holds. The function $F_{N}(\xi)$ has many useful properties. First, F_{N} is quadratic whenever $N \geq n$. This follows from the fact that optimizing a quadratic function subject to linear constraints is quadratic whenever it is finite. To check finiteness, first we have $F_{N}(\xi) \geq 0$ so the problem is bounded below. Next, the problem is feasible for $N \geq n$ due to controllability of (A, B), so $F_{N}(\xi)<\infty$. The problem is therefore finite, and we can write $F_{N}(\xi)=\xi^{\top} P_{N} \xi$ for some matrix $P_{N} \succeq 0$.
Next, $F_{N}(\xi)$ is monotonically nonincreasing in N. This is because if a particular optimal cost can be attained for some N, it can also be attained for any $\hat{N}>N$ by picking $u_{N}=\cdots=u_{\hat{N}-1}=0$, as the state will remain at $x_{N}=\cdots=x_{\hat{N}}=0$. We conclude that $P_{\hat{N}} \preceq P_{N}$ whenever $\hat{N} \geq N$.
Since $F_{N}(\xi)$ is bounded below and monotonically nonincreasing, it must tend to a limit. Therefore, we have $\lim _{N \rightarrow \infty} F_{N}(\xi)=F(\xi)$. Since F_{N} is quadratic for each N, the limit is also quadratic, and we conclude that $\lim _{N \rightarrow \infty} P_{N}=P$ and $F(\xi)=\xi^{\top} P \xi$ with $P \succeq 0$.
We will now bound F_{N} in terms of F_{N-1} using a dynamic programming-like argument. Let ξ be
any state and η be any input.

$$
\begin{aligned}
& F_{N}(A \xi+B \eta)=\underset{\substack{u_{0}, \ldots, u_{N}-1 \\
y_{0}, \ldots, N_{N}-1 \\
x_{0}, \ldots, x_{N}}}{\min ,{ }_{c} \operatorname{size}} \sum_{k=0}^{N-1}\left(\gamma^{2}\left\|u_{t}\right\|^{2}-\left\|y_{t}\right\|^{2}\right) \\
& \text { s.t. } \quad x_{t+1}=A x_{t}+B u_{t} \text {, } \\
& y_{t}=C x_{t}+D u_{t} \quad \text { for } t=0, \ldots, N-1 \\
& x_{0}=0, \quad x_{N}=A \xi+B \eta \\
& \leq \underset{\substack{u_{0}, \ldots, u_{N}-1 \\
y_{0}, y_{N}-1 \\
x_{0}, \ldots, x_{N}}}{\operatorname{minimize}} \sum_{k=0}^{N-1}\left(\gamma^{2}\left\|u_{t}\right\|^{2}-\left\|y_{t}\right\|^{2}\right) \\
& \text { s.t. } \quad x_{t+1}=A x_{t}+B u_{t} \text {, } \\
& y_{t}=C x_{t}+D u_{t} \quad \text { for } t=0, \ldots, N-1 \\
& x_{0}=0, \quad x_{N-1}=\xi, \quad u_{N-1}=\eta \\
& =\underset{\substack{u_{0}, \ldots, u_{N}-2 \\
y_{0}, \ldots, y^{2}-2 \\
x_{0}, \ldots, x_{N-1}}}{\operatorname{minimiz}} \sum_{k=0}^{N-2}\left(\gamma^{2}\left\|u_{t}\right\|^{2}-\left\|y_{t}\right\|^{2}\right)+\left(\gamma^{2}\|\eta\|^{2}-\|C \xi+D \eta\|^{2}\right) \\
& \text { s.t. } x_{t+1}=A x_{t}+B u_{t} \text {, } \\
& y_{t}=C x_{t}+D u_{t} \quad \text { for } t=0, \ldots, N-2 \\
& x_{0}=0, \quad x_{N-1}=\xi \\
& =F_{N-1}(\xi)+\gamma^{2}\|\eta\|^{2}-\|C \xi+D \eta\|^{2}
\end{aligned}
$$

Taking the limit $N \rightarrow \infty$, we obtain the inequality:

$$
F(A \xi+B \eta) \leq F(\xi)+\gamma^{2}\|\eta\|^{2}-\|C \xi+D \eta\|^{2}
$$

We previously established that $F(x)=x^{\top} P x$ with $P \succeq 0$. Substituting into the above, we obtain

$$
(A \xi+B \eta)^{\top} P(A \xi+B \eta)-\xi^{\top} P \xi+(C \xi+D \eta)^{\top}(C \xi+D \eta)-\gamma^{2} \eta^{\top} \eta \leq 0
$$

Write the left-hand side as a quadratic form and obtain:

$$
\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]^{\top}\left[\begin{array}{cc}
A^{\top} P A-P+C^{\top} C & A^{\top} P B+C^{\top} D \\
B^{\top} P A+D^{\top} C & B^{\top} P B+D^{\top} D-\gamma^{2} I
\end{array}\right]\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right] \leq 0
$$

this must hold for all (ξ, η), so we obtain Item (iv), as required. To prove that $P \succ 0$, the $(1,1)$ block implies that $A^{\top} P A-P+C^{\top} C \preceq 0$. This means there must exist some matrix $W \succ 0$ such that $A^{\top} P A-P+C^{\top} C+W=0$. Since $W \succeq 0$, we can factor $W=H^{\top} H$ and rewrite as:

$$
A^{\top} P A-P+\left[\begin{array}{l}
C \\
H
\end{array}\right]^{\top}\left[\begin{array}{l}
C \\
H
\end{array}\right]=0
$$

This is a Lyapunov equation with $P \succeq 0$ and (A, C) observable. Therefore, $\left(A,\left[\begin{array}{l}C \\ H\end{array}\right]\right)$ is observable, and we conclude that A is Schur-stable and $P \succ 0$.
(iv) $\Longrightarrow(\mathbf{v})$. Suppose (iv) holds. Multiply both sides by $\left(x_{t}, u_{t}\right)$ and substitute the dynamics (1):

$$
x_{t+1}^{\top} P x_{t+1}-x_{t}^{\top} P x_{t} \leq \gamma^{2}\left\|u_{t}\right\|^{2}-\left\|y_{t}\right\|^{2} .
$$

Letting $V(x):=x^{\top} P x$, the inequality above becomes Item (v). The fact that $P \succ 0$ implies that $V(x)>0$ for all $x \neq 0$ and $V(0)=0$, as required.
$(\mathrm{v}) \Longrightarrow$ (ii). Suppose (v) holds and $x_{0}=0$. Sum the dissipation inequality from $t=0$ to $t=N-1$ and use the fact that $V\left(x_{0}\right)=V(0)=0$ to obtain

$$
V\left(x_{N}\right) \leq \sum_{t=0}^{N-1}\left(\gamma^{2}\left\|u_{t}\right\|^{2}-\left\|y_{t}\right\|^{2}\right)
$$

Since V is positive definite, the left-hand side is nonnegative. Rearranging, we obtain (ii).
Remark 1. In the proof of Theorem 1, the controllability assumption is only used in (iii) \Longrightarrow (iv) and the observability assumption is only used in proving that $P \succ 0$ in refbropt \Longrightarrow (iv). If we remove the observability assumption, we still have $P \succeq 0$.

There are many equivalent ways of writing the LMI from Item (iv) of Theorem 1. These follow from applying properties of the Schur complement and positive definite matrices.

Corollary 1 (Alternative LMIs). The following statements are equivalent.
(i) There exists $P \succ 0$ such that

$$
\left[\begin{array}{cc}
A^{\top} P A-P+C^{\top} C & A^{\top} P B+C^{\top} D \\
B^{\top} P A+D^{\top} C & B^{\top} P B+D^{\top} D-\gamma^{2} I
\end{array}\right] \preceq 0 .
$$

(ii) There exists $P \succ 0$ such that

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{\top}\left[\begin{array}{ll}
P & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]-\left[\begin{array}{cc}
P & 0 \\
0 & \gamma^{2} I
\end{array}\right] \preceq 0 .
$$

(iii) There exists $P \succ 0$ such that

$$
\left[\begin{array}{ccc}
A^{\top} P A-P & A^{\top} P B & C^{\top} \\
B^{\top} P A & B^{\top} P B-\gamma I & D^{\top} \\
C & D & -\gamma I
\end{array}\right] \preceq 0 .
$$

(iv) There exists $P \succ 0$ such that

$$
\left[\begin{array}{cccc}
P & P A & P B & 0 \\
A^{\top} P & P & 0 & C^{\top} \\
B^{\top} P & 0 & \gamma I & D^{\top} \\
0 & C & D & \gamma I
\end{array}\right] \succeq 0 .
$$

Remark 2. We can also set $Q=P^{-1}$ and rearrange the LMIs in Corollary 1 to be linear in Q instead. This yields a dual set of analogous LMIs. Practically speaking, this is exactly equivalent to taking any of the LMIs in Corollary 1 and performing the change of variables

$$
(P, A, B, C, D) \mapsto\left(Q, A^{\top}, C^{\top}, B^{\top}, D^{\top}\right) .
$$

This is a manifestation of the fact that a system G and its transpose G^{\top} have the same \mathcal{H}_{∞}-norm. It is also analogous to the dual representations we found for the \mathcal{H}_{2} norm, which demonstrate the similar fact that G and G^{\top} also have the same \mathcal{H}_{2}-norm.

2 The bounded real lemma

The name bounded real lemma typically refers to an equivalence between the LMI of Theorem 1 and a frequency-domain condition. Here is the result.

Theorem 2 (Bounded real lemma). Let $G(z):=C(z I-A)^{-1} B+D$, where (A, B, C, D) is a minimal realization. The following statements are equivalent.
(i) There exists a matrix $P \succ 0$ satisfying the following LMI.

$$
\left[\begin{array}{cc}
A^{\top} P A-P+C^{\top} C & A^{\top} P B+C^{\top} D \tag{2}\\
B^{\top} P A+D^{\top} C & B^{\top} P B+D^{\top} D-\gamma^{2} I
\end{array}\right] \preceq 0
$$

(ii) For all $z \in \mathbb{C}$ such that $|z| \geq 1$, the following frequency-domain inequality holds.

$$
\begin{equation*}
G(z)^{*} G(z) \preceq \gamma^{2} I . \tag{3}
\end{equation*}
$$

Proof. Proof that $(\mathbf{i}) \Longrightarrow$ (ii). Suppose (i) holds. Pick z such that $\operatorname{det}(z I-A) \neq 0$, so $z I-A$ is invertible. Start with (2) and compute

$$
\begin{aligned}
& {\left[\begin{array}{c}
(z I-A)^{-1} B \\
I
\end{array}\right]^{*}\left[\begin{array}{cc}
A^{\top} P A-P+C^{\top} C & A^{\top} P B+C^{\top} D \\
B^{\top} P A+D^{\top} C & B^{\top} P B+D^{\top} D-\gamma^{2} I
\end{array}\right]\left[\begin{array}{c}
(z I-A)^{-1} B \\
I
\end{array}\right] \preceq 0 } \\
\Longleftrightarrow & {\left[\begin{array}{c}
(z I-A)^{-1} B \\
I
\end{array}\right]^{*}\left[\begin{array}{cc}
A^{\top} P A-P & A^{\top} P B \\
B^{\top} P A & B^{\top} P B
\end{array}\right]\left[\begin{array}{c}
(z I-A)^{-1} B \\
I
\end{array}\right]+G(z)^{*} G(z) \preceq \gamma^{2} I }
\end{aligned}
$$

The term on the left simplifies to

$$
\begin{aligned}
& {\left[\begin{array}{c}
(z I-A)^{-1} B \\
I
\end{array}\right]^{*}\left[\begin{array}{cc}
A^{\top} P A-P & A^{\top} P B \\
B^{\top} P A & B^{\top} P B
\end{array}\right]\left[\begin{array}{c}
(z I-A)^{-1} B \\
I
\end{array}\right]} \\
& \quad=\left[\begin{array}{c}
(z I-A)^{-1} B \\
I
\end{array}\right]^{*}\left(\left[\begin{array}{l}
A^{\top} \\
B^{\top}
\end{array}\right] P\left[\begin{array}{ll}
A & B
\end{array}\right]-\left[\begin{array}{cc}
P & 0 \\
0 & 0
\end{array}\right]\right)\left[\begin{array}{c}
(z I-A)^{-1} B \\
I
\end{array}\right] \\
& \quad=\left(B^{\top}\left(\bar{z} I-A^{\top}\right)^{-1} A^{\top}+B^{\top}\right) P\left(A(z I-A)^{-1} B+B\right)-B^{\top}\left(\bar{z} I-A^{\top}\right)^{-1} P(z I-A)^{-1} B \\
& \quad=B^{\top}\left(\bar{z} I-A^{\top}\right)^{-1}(\bar{z} z P-P)(z I-A)^{-1} B=0 \\
& \quad=\left(|z|^{2}-1\right) \cdot B^{\top}\left(\bar{z} I-A^{\top}\right)^{-1} P(z I-A)^{-1} B=0 \\
& \quad \succeq 0 .
\end{aligned}
$$

In the last step, we used the fact that $|z|^{2} \geq 1$ and $P \succ 0$. Therefore (3) holds and hence we have proven Item (ii), as required.

Proof that (ii) \Longrightarrow (i). Suppose (ii) holds. Let $u \in \ell_{2}$ and consider its z-transform $\hat{u}(z)$. Then the output of the system has z-transform $\hat{y}(z)=G(z) \hat{u}(z)$. Starting with 3 , we have

$$
\hat{y}(z)^{*} \hat{y}(z)=\hat{u}(z)^{*} G(z)^{*} G(z) \hat{u}(z) \preceq \gamma^{2} \hat{u}(z)^{*} \hat{u}(z)
$$

Integrating both sides along the unit circle, we obtain:

$$
\int_{-\pi}^{\pi} \hat{y}\left(e^{i \theta}\right)^{*} \hat{y}\left(e^{i \theta}\right) \mathrm{d} \theta \leq \gamma^{2} \int_{-\pi}^{\pi} \hat{u}\left(e^{i \theta}\right)^{*} \hat{u}\left(e^{i \theta}\right) \mathrm{d} \theta
$$

The integral on the right-hand side converges, because $u \in \ell_{2}$, which implies $\hat{u} \in \ell_{2}$. The integral on the left-hand side is bounded above and its integrand is nonnegative, so the integral must also converge, and we have $\hat{y} \in \ell_{2}$. Apply the discrete version of Parseval's theorem and obtain

$$
\int_{0}^{\infty} y(t)^{\top} y(t) \mathrm{d} t \leq \gamma^{2} \int_{0}^{\infty} u(t)^{\top} u(t) \mathrm{d} t .
$$

In other words, $\|y\| \leq \gamma\|u\|$ for all $u \in \ell_{2}$, so G has gain bound γ. We can now apply Theorem 1 to prove that the LMI (2) holds.

Remark 3. There are points at which $G(z)$ is undefined, namely whenever $z I-A$ is not invertible. These are the poles of $G(z)$. We don't need to worry about such points in Item (ii) of Theorem 2 because if $G(z)$ had a pole satisfying $|z| \geq 1$, then $\operatorname{trace}\left(G(z)^{*} G(z)\right)$ would approach $+\infty$ near that pole, and so (3) could not hold for any finite γ. In other words, if Item (ii) holds, then G must be a stable transfer matrix.

Remark 4. If we replace the \preceq symbols in (2) and (3) with \prec, it is possible to prove Theorem 2 without the need for the minimality assumption on (A, B, C, D). The proof method is different, however, since we can no longer use Theorem 1.
Theorem 2 provides the following frequency-domain characterization of the \mathcal{H}_{∞}-norm.
Corollary 2. Suppose G is a linear system with transfer function $G(z)$. We have the following equivalent characterizations of the \mathcal{H}_{∞} norm.

$$
\|G\|_{\infty}=\sup _{\substack{u \in \ell_{2} \\ u \neq 0}} \frac{\|G u\|}{\|u\|}=\sup _{|z|>1}\|G(z)\|
$$

If we further assume that G is stable to begin with, so it has no poles in the closed right-half plane, we can apply the maximum modulus principle and deduce that:

$$
\|G\|_{\infty}=\sup _{|z|=1}\|G(z)\|=\sup _{\theta \in[-\pi, \pi]}\left\|G\left(e^{i \theta}\right)\right\|
$$

This is more practical because it is often easy to check stability, and then we can turn the optimization over the region $|z|>1$ into an optimization over the compact interval $\theta \in[-\pi, \pi]$. Using this interpretation, we see that when G is a stable SISO system (single-input, single-output), $\|G\|_{\infty}$ is the peak of the Bode magnitude plot of G.

