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1 Boundedness

There are several different equivalent ways of characterizing the boundedness of a linear dynamical
system,in the sense of “bounded input, bounded output”. We consider the dynamical system:

Tiy1 = Az + Buy

B (1)
yr = Cxy + Duy

Theorem 1. Suppose (A, B,C, D) is a minimal realization, so (A, B) is controllable and (A, C)
1s observable. The following statements are equivalent.

(i) Let {ug,u1,...} and {yo,y1,...} be any sequence of inputs and outputs that satisfy (1)
with xg = 0. The system has gain bound -, which means that whenever u € {5, we have

1yl < ~llull.

(ii) Let {ug,u1,...,} and {yo,y1,...} be any sequence of inputs and outputs that satisfy (1)
with xg = 0. The system has finite gain bound -y, which means that

N-1 N-1
Z lyel* < 2 Z e || for all N.
t=0 t=0

(iii) Fn(&) >0 for all £ and all N, where Fy is defined as

N—-1
Fy(¢) := minimize Y (y*|luel® — [lyel|?)

UQ,-- - UN —1
Y0, YN -1 t=0
Z0,--y TN

st. x4r1 = Az + Buy,
vy =Cxy+ Duy fort=0,...,N—1
ro=0, xn=¢
(iv) There exists a matriz P = 0 satisfying the following LMI.
ATPA-P+CTC ATPB+C™D <0
B"PA+D'C B"PB+D'D-—~%I| —

(v) There exists a function V : R™ — R satisfying V(0) =0 and V(x) > 0 for all x # 0 such
that for all {x¢,us, y¢} that satisfy (1), we have the following dissipation inequality.

Vi(zer1) = Viwe) < 92 uel* = llyel®.




Proof. We will prove Theorem 1 by proving (i) <= (ii) = (iii) = (iv) = (v) = (ii).

(i) = (ii). Suppose (i) holds. Let xy = 0 and let {ug,u1,...} and {yo,y1,...} be inputs and
outputs that satisfy (1). Define @ and ¢ to be the truncated versions of these signals:

w 0<t<N-1 X gy 0<t<N-1
Uy i= i and Yp 1= .
0 otherwise 0 otherwise

Since the system (1) is causal, applying the input @ actually produces 3 as an output. Now write

00 0o N-1
lyell® = " lgel* < * D laull® =+ .
t=0 t=0

t= t=0

N—

—_

The inequality in the middle follows from applying Item (i) to the signals & and 3. Note that @ € £y
since it consists of finitely many nonzero components. |

(ii) = (i). Suppose (ii) holds. Let zp = 0 and let {ug,u1,...} and {yo,y1,...} be inputs and
outputs that satisfy (1). If u € f2, then we have

N—

—

N-1 )
lyel® <72 ludl® <% fluell® = 22 lul*.
t= t=0 t=0

The left-hand side is an increasing function of N and uniformly bounded above, so the limit N — oo
exists, and we conclude that y € £ and ||y||? < ~2||ul|?, as required. [

(ii) = (iii). Nonnegativity of the objective function follows immediately from (ii), so the op-
timization problem must be nonnegative for every £&. Note that if the optimization problem is
infeasible, we have F'(£) = co > 0 so nonnegativity still holds. |

(iii) = (iv). Suppose that Item (iii) holds. The function Fy (&) has many useful properties.
First, Fy is quadratic whenever N > n. This follows from the fact that optimizing a quadratic
function subject to linear constraints is quadratic whenever it is finite. To check finiteness, first
we have Fx(§) > 0 so the problem is bounded below. Next, the problem is feasible for N > n
due to controllability of (A, B), so Fn(§) < oo. The problem is therefore finite, and we can write
Fyn(€) = €T Pyé for some matrix Py > 0.

Next, Fn (&) is monotonically nonincreasing in N. This is because if a particular optimal cost can
be attained for some N, it can also be attained for any N > N by picking uy = --- = ug_, =0,

as the state will remain at zy = --- = x5 = 0. We conclude that Py < Py whenever N > N.

Since F(§) is bounded below and monotonically nonincreasing, it must tend to a limit. Therefore,
we have limy_,o, Fx(§) = F(§). Since Fy is quadratic for each N, the limit is also quadratic, and
we conclude that limy o Py = P and F(£) = £TP¢ with P > 0.

We will now bound Fy in terms of Fiy_; using a dynamic programming-like argument. Let £ be



any state and n be any input.

N,
Fn(A¢+Bn) = minimize (V{luell® = Nlyel?)

UQ,---, UN -1
Y0, YN -1 k=
L0,y TN

—

o

s.t. w441 = Axy + Buy,
vy =Cxy+ Dy fort=0,...,N—1
z9g=0, xy=A&+ Bn

=

IN

e . 2 2 2
minimize >~ (" ur]* = lue]?)
Y0, YN-1
L0, s TN

st. xy4p1 = Az + Buy,
vy =Cxy+ Duy fort=0,...,N—1

ro=0, xzy-1=§ un-1=7

N-2
_ N 2, 12 2 2112 2
= minimize Y (5 [luel® ~ lwell?) + ([Inll* = 1C& + Dn?)

Yo, YN -2
Z0y--»TN—1

i
o

ol
o

s.t. x411 = Axy + Buy,
yt = Cxy+ Duy fort=0,...,N —2
o = 0, IN—-1 = f
= Fn-1(&) +7*|Inll* €€ + Dn?
Taking the limit N — oo, we obtain the inequality:
F(AS + Bn) < F(§) +7%||nl* — [|C¢ + Da||*
We previously established that F(x) = 2T Pz with P > 0. Substituting into the above, we obtain
(A& + Bn) " P(AE + Bn) — €T PE + (C¢+ D) T(CE+ D) — 90" <0

Write the left-hand side as a quadratic form and obtain:

1T [ATPA-P+CTC  ATPB+CTD <y

n BTPA+D'C  BTPB+D'D—42I| |n| —

this must hold for all (§,7), so we obtain Item (iv), as required. To prove that P = 0, the (1,1)
block implies that ATPA — P4+ CTC < 0. This means there must exist some matrix W > 0 such
that ATPA— P+ CTC + W = 0. Since W = 0, we can factor W = H" H and rewrite as:

.
Toa . lC1T[C]
ATPA P+{H =0

This is a Lyapunov equation with P = 0 and (4, C) observable. Therefore, (A4, [ §]) is observable,
and we conclude that A is Schur-stable and P > 0. [

(iv) = (v). Suppose (iv) holds. Multiply both sides by (xt,u:) and substitute the dynamics (1):

2l Proi1 — 2] Py < 92 lug|)® — [|ye]|



Letting V(z) := 2" Pz, the inequality above becomes Item (v). The fact that P >~ 0 implies that
V(x) > 0 for all x # 0 and V(0) = 0, as required. [

(v) = (ii). Suppose (v) holds and xp = 0. Sum the dissipation inequality from ¢t =0tot =N —1
and use the fact that V(z¢) = V(0) = 0 to obtain

N-1
Vien) <Y (Plluel® = llyell?) -
t=0
Since V' is positive definite, the left-hand side is nonnegative. Rearranging, we obtain (ii). |

Remark 1. In the proof of Theorem 1, the controllability assumption is only used in (iii) = (iv)
and the observability assumption is only used in proving that P > 0 in refbropt = (iv). If we
remove the observability assumption, we still have P > 0.

There are many equivalent ways of writing the LMI from Item (iv) of Theorem 1. These follow from
applying properties of the Schur complement and positive definite matrices.

Corollary 1 (Alternative LMIs). The following statements are equivalent.
(i) There exists P = 0 such that

ATPA—P4+CTC ATPB+C™D <0
BTPA+D'C B"PB+D'D-~2I| —

(i) There exists P = 0 such that

A B|'[P 0][A B] [P 0]_,
C D| |0 I||C D 0 21| — 7
(iii) There exists P > 0 such that

ATPA—P  A'PB cT
B'"PA B'PB-—~I DT| <0.
C D —~I

(iv) There exists P > 0 such that

P PA PB 0
ATp P 0o (T _
B'P 0 ~I DT| =7
0 C D ~I

Remark 2. We can also set Q = P~! and rearrange the LMIs in Corollary 1 to be linear in Q
instead. This yields a dual set of analogous LMIs. Practically speaking, this is exactly equivalent
to taking any of the LMIs in Corollary 1 and performing the change of variables

(P,A,B,C,D) —~ (Q,A",CT,BT,DT).

This is a manifestation of the fact that a system G and its transpose G have the same Hoo-norm.
It is also analogous to the dual representations we found for the Ho norm, which demonstrate the
similar fact that G and GT also have the same Hs-norm.



2 The bounded real lemma

The name bounded real lemma typically refers to an equivalence between the LMI of Theorem 1
and a frequency-domain condition. Here is the result.

Theorem 2 (Bounded real lemma). Let G(z) := C(zI — A)~'B + D, where (A, B,C, D) is a
minimal realization. The following statements are equivalent.

(i) There ezists a matriz P > 0 satisfying the following LMI.

ATPA—-P+CTC ATPB+CTD Z0 @)
BTPA+D'C  B'PB+D'D-—~%I| —

(i) For all z € C such that |z| > 1, the following frequency-domain inequality holds.

G(2)*G(z) = 1. (3)

Proof. Proof that (i) = (ii). Suppose (i) holds. Pick z such that det(z] — A) # 0, so zI — A is
invertible. Start with (2) and compute

(:I =A)7'B|"[ATPA-P+C"C _ATPB+C™D | [(zI-A)"'B] _
I BTPA+D'C B"PB+D'D—~%] I -
(21 —A)'B]"[ATPA—P A"PB] [(:I - A)'B ) 2
= [ I BTPA BTPB I +G(2)GE) 2T

The term on the left simplifies to

(21 —A)"'B]"[ATPA—P A"PB][(zI-A)"'B
I B'PA  B'PB I

[ (e - G

= (BT(zI — AT)1AT 4 BT>P(A(zI —A) B+ B) —BT(zI — AT)"'P(zI - A)"'B
=BT (zZI - A" 1 (z22P - P)(2I —A)"'B=0
2|2 —=1)- BT (2] — AT)"'P(2I — A)"'B=0

In the last step, we used the fact that |z|?> > 1 and P = 0. Therefore (3) holds and hence we have
proven Item (ii), as required.

Proof that (ii) = (i). Suppose (ii) holds. Let u € ¢2 and consider its z-transform (z). Then
the output of the system has z-transform g(z) = G(z)u(z). Starting with 3, we have

9(2)"9(2) = (2)"G(2)"G(2)a(2) = 7*alz)"a(2)

Integrating both sides along the unit circle, we obtain:

/ﬂ Zj(eie)*ﬁ(ew) do < 72 /7T a(eie)*a(eiﬁ) do

—T —T

5



The integral on the right-hand side converges, because u € ¢, which implies @ € ¢5. The integral
on the left-hand side is bounded above and its integrand is nonnegative, so the integral must also
converge, and we have ¢ € ¢5. Apply the discrete version of Parseval’s theorem and obtain

/ N y(t) Ty(t) dt <~ / h w(t) Tu(t) dt.
0 0

In other words, [|y|| < v||u|| for all u € ¢3, so G has gain bound . We can now apply Theorem 1 to
prove that the LMI (2) holds. [

Remark 3. There are points at which G(z) is undefined, namely whenever zI — A is not invertible.
These are the poles of G(z). We don’t need to worry about such points in Item (ii) of Theorem 2
because if G(z) had a pole satisfying |z| > 1, then trace(G(z)*G(z)) would approach +oo near that
pole, and so (3) could not hold for any finite v. In other words, if Item (ii) holds, then G must be
a stable transfer matrix.

Remark 4. If we replace the < symbols in (2) and (3) with <, it is possible to prove Theorem 2
without the need for the minimality assumption on (A, B,C, D). The proof method is different,
however, since we can no longer use Theorem 1.

Theorem 2 provides the following frequency-domain characterization of the H.o,-norm.

Corollary 2. Suppose G is a linear system with transfer function G(z). We have the following
equivalent characterizations of the Hoo norm.

[Gull
111;502 u |z|>1

If we further assume that G is stable to begin with, so it has no poles in the closed right-half plane,
we can apply the maximum modulus principle and deduce that:

IGlloe = sup IG(2)] = sup [G(e”)]
|z|=1 oec|—m,m]

This is more practical because it is often easy to check stability, and then we can turn the optimiza-
tion over the region |z| > 1 into an optimization over the compact interval § € [—m, 7]. Using this
interpretation, we see that when G is a stable SISO system (single-input, single-output), |G|/~ is
the peak of the Bode magnitude plot of G.
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