
ME 7247: Advanced Control Systems Supplementary notes

The bounded real lemma
v.1.0 (12.3.2022)

1 Boundedness

There are several different equivalent ways of characterizing the boundedness of a linear dynamical
system,in the sense of “bounded input, bounded output”. We consider the dynamical system:

xt+1 = Axt +But

yt = Cxt +Dut
(1)

Theorem 1. Suppose (A,B,C,D) is a minimal realization, so (A,B) is controllable and (A,C)
is observable. The following statements are equivalent.

(i) Let {u0, u1, . . . } and {y0, y1, . . . } be any sequence of inputs and outputs that satisfy (1)
with x0 = 0. The system has gain bound γ, which means that whenever u ∈ ℓ2, we have

∥y∥ ≤ γ∥u∥.

(ii) Let {u0, u1, . . . , } and {y0, y1, . . . } be any sequence of inputs and outputs that satisfy (1)
with x0 = 0. The system has finite gain bound γ, which means that

N−1∑
t=0

∥yt∥2 ≤ γ2
N−1∑
t=0

∥ut∥2 for all N.

(iii) FN (ξ) ≥ 0 for all ξ and all N , where FN is defined as

FN (ξ) := minimize
u0,...,uN−1
y0,...,yN−1
x0,...,xN

N−1∑
t=0

(
γ2∥ut∥2 − ∥yt∥2

)
s.t. xt+1 = Axt +But,

yt = Cxt +Dut for t = 0, . . . , N − 1

x0 = 0, xN = ξ

(iv) There exists a matrix P ≻ 0 satisfying the following LMI.[
ATPA− P + CTC ATPB + CTD
BTPA+DTC BTPB +DTD − γ2I

]
⪯ 0

(v) There exists a function V : Rn → R satisfying V (0) = 0 and V (x) > 0 for all x ̸= 0 such
that for all {xt, ut, yt} that satisfy (1), we have the following dissipation inequality.

V (xt+1)− V (xt) ≤ γ2∥ut∥2 − ∥yt∥2.
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Proof. We will prove Theorem 1 by proving (i) ⇐⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) =⇒ (ii).

(i) =⇒ (ii). Suppose (i) holds. Let x0 = 0 and let {u0, u1, . . . } and {y0, y1, . . . } be inputs and
outputs that satisfy (1). Define û and ŷ to be the truncated versions of these signals:

ût :=

{
ut 0 ≤ t ≤ N − 1

0 otherwise
and ŷt :=

{
yt 0 ≤ t ≤ N − 1

0 otherwise

Since the system (1) is causal, applying the input û actually produces ŷ as an output. Now write

N−1∑
t=0

∥yt∥2 =
∞∑
t=0

∥ŷt∥2 ≤ γ2
∞∑
t=0

∥ût∥2 = γ2
N−1∑
t=0

∥ut∥2.

The inequality in the middle follows from applying Item (i) to the signals û and ŷ. Note that û ∈ ℓ2
since it consists of finitely many nonzero components. ■

(ii) =⇒ (i). Suppose (ii) holds. Let x0 = 0 and let {u0, u1, . . . } and {y0, y1, . . . } be inputs and
outputs that satisfy (1). If u ∈ ℓ2, then we have

N−1∑
t=0

∥yt∥2 ≤ γ2
N−1∑
t=0

∥ut∥2 ≤ γ2
∞∑
t=0

∥ut∥2 = γ2∥u∥2.

The left-hand side is an increasing function of N and uniformly bounded above, so the limit N → ∞
exists, and we conclude that y ∈ ℓ2 and ∥y∥2 ≤ γ2∥u∥2, as required. ■

(ii) =⇒ (iii). Nonnegativity of the objective function follows immediately from (ii), so the op-
timization problem must be nonnegative for every ξ. Note that if the optimization problem is
infeasible, we have F (ξ) = ∞ ≥ 0 so nonnegativity still holds. ■

(iii) =⇒ (iv). Suppose that Item (iii) holds. The function FN (ξ) has many useful properties.
First, FN is quadratic whenever N ≥ n. This follows from the fact that optimizing a quadratic
function subject to linear constraints is quadratic whenever it is finite. To check finiteness, first
we have FN (ξ) ≥ 0 so the problem is bounded below. Next, the problem is feasible for N ≥ n
due to controllability of (A,B), so FN (ξ) < ∞. The problem is therefore finite, and we can write
FN (ξ) = ξTPNξ for some matrix PN ⪰ 0.

Next, FN (ξ) is monotonically nonincreasing in N . This is because if a particular optimal cost can
be attained for some N , it can also be attained for any N̂ > N by picking uN = · · · = uN̂−1 = 0,
as the state will remain at xN = · · · = xN̂ = 0. We conclude that PN̂ ⪯ PN whenever N̂ ≥ N .

Since FN (ξ) is bounded below and monotonically nonincreasing, it must tend to a limit. Therefore,
we have limN→∞ FN (ξ) = F (ξ). Since FN is quadratic for each N , the limit is also quadratic, and
we conclude that limN→∞ PN = P and F (ξ) = ξTPξ with P ⪰ 0.

We will now bound FN in terms of FN−1 using a dynamic programming-like argument. Let ξ be
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any state and η be any input.

FN (Aξ +Bη) = minimize
u0,...,uN−1
y0,...,yN−1
x0,...,xN

N−1∑
k=0

(
γ2∥ut∥2 − ∥yt∥2

)
s.t. xt+1 = Axt +But,

yt = Cxt +Dut for t = 0, . . . , N − 1

x0 = 0, xN = Aξ +Bη

≤ minimize
u0,...,uN−1
y0,...,yN−1
x0,...,xN

N−1∑
k=0

(
γ2∥ut∥2 − ∥yt∥2

)
s.t. xt+1 = Axt +But,

yt = Cxt +Dut for t = 0, . . . , N − 1

x0 = 0, xN−1 = ξ, uN−1 = η

= minimize
u0,...,uN−2
y0,...,yN−2
x0,...,xN−1

N−2∑
k=0

(
γ2∥ut∥2 − ∥yt∥2

)
+
(
γ2∥η∥2 − ∥Cξ +Dη∥2

)
s.t. xt+1 = Axt +But,

yt = Cxt +Dut for t = 0, . . . , N − 2

x0 = 0, xN−1 = ξ

= FN−1(ξ) + γ2∥η∥2 − ∥Cξ +Dη∥2

Taking the limit N → ∞, we obtain the inequality:

F (Aξ +Bη) ≤ F (ξ) + γ2∥η∥2 − ∥Cξ +Dη∥2

We previously established that F (x) = xTPx with P ⪰ 0. Substituting into the above, we obtain

(Aξ +Bη)TP (Aξ +Bη)− ξTPξ + (Cξ +Dη)T(Cξ +Dη)− γ2ηTη ≤ 0

Write the left-hand side as a quadratic form and obtain:[
ξ
η

]T [
ATPA− P + CTC ATPB + CTD
BTPA+DTC BTPB +DTD − γ2I

] [
ξ
η

]
≤ 0

this must hold for all (ξ, η), so we obtain Item (iv), as required. To prove that P ≻ 0, the (1, 1)
block implies that ATPA − P + CTC ⪯ 0. This means there must exist some matrix W ≻ 0 such
that ATPA− P + CTC +W = 0. Since W ⪰ 0, we can factor W = HTH and rewrite as:

ATPA− P +

[
C
H

]T [
C
H

]
= 0

This is a Lyapunov equation with P ⪰ 0 and (A,C) observable. Therefore, (A,
[
C
H

]
) is observable,

and we conclude that A is Schur-stable and P ≻ 0. ■

(iv) =⇒ (v). Suppose (iv) holds. Multiply both sides by (xt, ut) and substitute the dynamics (1):

xT
t+1Pxt+1 − xT

t Pxt ≤ γ2∥ut∥2 − ∥yt∥2.
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Letting V (x) := xTPx, the inequality above becomes Item (v). The fact that P ≻ 0 implies that
V (x) > 0 for all x ̸= 0 and V (0) = 0, as required. ■

(v) =⇒ (ii). Suppose (v) holds and x0 = 0. Sum the dissipation inequality from t = 0 to t = N −1
and use the fact that V (x0) = V (0) = 0 to obtain

V (xN ) ≤
N−1∑
t=0

(
γ2∥ut∥2 − ∥yt∥2

)
.

Since V is positive definite, the left-hand side is nonnegative. Rearranging, we obtain (ii). ■

Remark 1. In the proof of Theorem 1, the controllability assumption is only used in (iii) =⇒ (iv)
and the observability assumption is only used in proving that P ≻ 0 in refbropt =⇒ (iv). If we
remove the observability assumption, we still have P ⪰ 0.

There are many equivalent ways of writing the LMI from Item (iv) of Theorem 1. These follow from
applying properties of the Schur complement and positive definite matrices.

Corollary 1 (Alternative LMIs). The following statements are equivalent.

(i) There exists P ≻ 0 such that[
ATPA− P + CTC ATPB + CTD
BTPA+DTC BTPB +DTD − γ2I

]
⪯ 0.

(ii) There exists P ≻ 0 such that[
A B
C D

]T [
P 0
0 I

] [
A B
C D

]
−
[
P 0
0 γ2I

]
⪯ 0.

(iii) There exists P ≻ 0 such thatATPA− P ATPB CT

BTPA BTPB − γI DT

C D −γI

 ⪯ 0.

(iv) There exists P ≻ 0 such that 
P PA PB 0

ATP P 0 CT

BTP 0 γI DT

0 C D γI

 ⪰ 0.

Remark 2. We can also set Q = P−1 and rearrange the LMIs in Corollary 1 to be linear in Q
instead. This yields a dual set of analogous LMIs. Practically speaking, this is exactly equivalent
to taking any of the LMIs in Corollary 1 and performing the change of variables

(P,A,B,C,D) 7→ (Q,AT, CT, BT, DT).

This is a manifestation of the fact that a system G and its transpose GT have the same H∞-norm.
It is also analogous to the dual representations we found for the H2 norm, which demonstrate the
similar fact that G and GT also have the same H2-norm.
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2 The bounded real lemma

The name bounded real lemma typically refers to an equivalence between the LMI of Theorem 1
and a frequency-domain condition. Here is the result.

Theorem 2 (Bounded real lemma). Let G(z) := C(zI − A)−1B +D, where (A,B,C,D) is a
minimal realization. The following statements are equivalent.

(i) There exists a matrix P ≻ 0 satisfying the following LMI.[
ATPA− P + CTC ATPB + CTD
BTPA+DTC BTPB +DTD − γ2I

]
⪯ 0 (2)

(ii) For all z ∈ C such that |z| ≥ 1, the following frequency-domain inequality holds.

G(z)∗G(z) ⪯ γ2I. (3)

Proof. Proof that (i) =⇒ (ii). Suppose (i) holds. Pick z such that det(zI −A) ̸= 0, so zI −A is
invertible. Start with (2) and compute[

(zI −A)−1B
I

]∗ [
ATPA− P + CTC ATPB + CTD
BTPA+DTC BTPB +DTD − γ2I

] [
(zI −A)−1B

I

]
⪯ 0

⇐⇒
[
(zI −A)−1B

I

]∗ [
ATPA− P ATPB
BTPA BTPB

] [
(zI −A)−1B

I

]
+G(z)∗G(z) ⪯ γ2I

The term on the left simplifies to[
(zI −A)−1B

I

]∗ [
ATPA− P ATPB
BTPA BTPB

] [
(zI −A)−1B

I

]
=

[
(zI −A)−1B

I

]∗([
AT

BT

]
P
[
A B

]
−
[
P 0
0 0

])[
(zI −A)−1B

I

]
=

(
BT(z̄I −AT)−1AT +BT

)
P
(
A(zI −A)−1B +B

)
−BT(z̄I −AT)−1P (zI −A)−1B

= BT(z̄I −AT)−1 (z̄zP − P ) (zI −A)−1B = 0

= (|z|2 − 1) ·BT(z̄I −AT)−1P (zI −A)−1B = 0

⪰ 0.

In the last step, we used the fact that |z|2 ≥ 1 and P ≻ 0. Therefore (3) holds and hence we have
proven Item (ii), as required.

Proof that (ii) =⇒ (i). Suppose (ii) holds. Let u ∈ ℓ2 and consider its z-transform û(z). Then
the output of the system has z-transform ŷ(z) = G(z)û(z). Starting with 3, we have

ŷ(z)∗ŷ(z) = û(z)∗G(z)∗G(z)û(z) ⪯ γ2û(z)∗û(z)

Integrating both sides along the unit circle, we obtain:∫ π

−π
ŷ(eiθ)∗ŷ(eiθ) dθ ≤ γ2

∫ π

−π
û(eiθ)∗û(eiθ) dθ
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The integral on the right-hand side converges, because u ∈ ℓ2, which implies û ∈ ℓ2. The integral
on the left-hand side is bounded above and its integrand is nonnegative, so the integral must also
converge, and we have ŷ ∈ ℓ2. Apply the discrete version of Parseval’s theorem and obtain∫ ∞

0
y(t)Ty(t) dt ≤ γ2

∫ ∞

0
u(t)Tu(t) dt.

In other words, ∥y∥ ≤ γ∥u∥ for all u ∈ ℓ2, so G has gain bound γ. We can now apply Theorem 1 to
prove that the LMI (2) holds. ■

Remark 3. There are points at which G(z) is undefined, namely whenever zI−A is not invertible.
These are the poles of G(z). We don’t need to worry about such points in Item (ii) of Theorem 2
because if G(z) had a pole satisfying |z| ≥ 1, then trace(G(z)∗G(z)) would approach +∞ near that
pole, and so (3) could not hold for any finite γ. In other words, if Item (ii) holds, then G must be
a stable transfer matrix.

Remark 4. If we replace the ⪯ symbols in (2) and (3) with ≺, it is possible to prove Theorem 2
without the need for the minimality assumption on (A,B,C,D). The proof method is different,
however, since we can no longer use Theorem 1.

Theorem 2 provides the following frequency-domain characterization of the H∞-norm.

Corollary 2. Suppose G is a linear system with transfer function G(z). We have the following
equivalent characterizations of the H∞ norm.

∥G∥∞ = sup
u∈ℓ2
u̸=0

∥Gu∥
∥u∥

= sup
|z|>1

∥G(z)∥

If we further assume that G is stable to begin with, so it has no poles in the closed right-half plane,
we can apply the maximum modulus principle and deduce that:

∥G∥∞ = sup
|z|=1

∥G(z)∥ = sup
θ∈[−π,π]

∥G(eiθ)∥

This is more practical because it is often easy to check stability, and then we can turn the optimiza-
tion over the region |z| > 1 into an optimization over the compact interval θ ∈ [−π, π]. Using this
interpretation, we see that when G is a stable SISO system (single-input, single-output), ∥G∥∞ is
the peak of the Bode magnitude plot of G.
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